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ABSTRACT

The Framework for Interdisciplinary Design Optimization (FIDO) is a general programming

environment for automating the distribution of complex computing tasks over a networked

system of heterogeneous computers.

Many design problems require inputs from a number of specialty disciplines. (For airplanes,

these include aerodynamics, structures, controls, etc.) The point of view, design emphasis, and

design approach of each discipline specialist can be quite different. Designers frequently pass a

new design from one discipline to another manually as each designer tries to reach an optimum

with little direct interaction with the others. The FIDO system facilitates communications and

provides for automatic interactions among the tasks in a multicomponent computational problem,

such as a multidisciplinary design process, on a distributed heterogeneous computing system.

All computers involved are networked together, have access to centralized data, and work

on their parts of the design simultaneously in parallel whenever possible. Each computational

task is done by the computer type most appropriate for it. Provision is made for viewing

results as they are produced and for steering the design process. The software is written in

modular form to ease migration to upgraded or completely new problems; different codes can

be substituted for each of the current code modules with little or no effect on the others.

The potential for commercial use of FIDO rests in its capability to automatically coordinate

diverse computations on a networked system of workstations and computers. For example,

FIDO could provide the coordination required for the design of fixed- or rotary-wing aircraft,

automobiles, ships, spacecraft, computer systems, or electronics.





OVERVIEW OF THE FIDO SYSTEM

Introduction

Established as a part of the Langley High Performance Computation and Communication

Program (HPCCP), the Framework for Interdisciplinary Design Optimization (FIDO) project

h_ as its goal the development of a general programming environment for distributing a

multicomponent computational problem across a networked system of heterogeneous computers.

A multidisciplinary airplane design process was chosen for the development of the programming

environment because of the interest in improving the efficiency of that process.

The FIDO system provides a means for automating the total design process. It facilitates

communication and control between components of the system, which include the diverse

discipline computations involved in a design problem and the system services that facilitate the

design. The computers used can include workstations, vector supercomputers, and parallel-

processing computers. (figure 1), although only UNIX®-based workstations are used currently.

Each computational task can be done by the computer type most appropriate for it. All of the

computers involved are networked together, have access to centralized data, and work on their

parts of the design, simultaneously whenever possible, under the coordination of a master code.

The following sections describe the model problem, the conceptual environment, task

control, data management, discipline segment functionality, the communications library, and

the results interrogation segment. The appendix gives a concise summary of the current

project status.

FIDO Model Problem

A simple model of a High-Speed Civil Transport (HSCT) design problem (figure 2) was

chosen for the initial implementation of the FIDO system. This problem is illustrative of

the type of computational problem envisioned for the FIDO system; however, the scope is

much reduced so that the focus can be specifically on computational system issues rather than

on the design problem. Figure 3 is a view of the overall optimization loop for a simplified

design of an HSCT. A particular design cycle begins with the choice of the flight conditions,

base aircraft geometry, and the values of the design constraints and the design variables, as

shown at the top of the figure.

For the FIDO model problem, four disciplines are involved in the analysis of the aircraft:

aerodynamics, structures, performance, and propulsion. At each cycle of the design, these

disciplines are invoked to analyze the current definition of the aircraft as specified by the current

values of the design variables. The results of the analyses provide a set of system responses

that correspond to the current design variables. The optimizer program uses these responses

plus the derivatives of the system responses with respect to the design variables. (At the current

stage of FIDO's development, these derivatives are obtained by finite differences using multiple



analyseson a perturbedsetof designvariables.In thefuture, theymay be obtainedby other
methods,suchas automaticdifferentiationwithin the disciplinecodes.)

In order to derive new valuesfor the designvariables,the optimizer usesan objective
function (which in this caseis theminimizationof the aircraft'sgrossweight for the specified
rangeandpayload)alongwith thecurrentsystemresponsesandderivatives.Thesenew values
are fed back into the designcycleuntil the processconverges.

FIDO Environment
6

The conceptual environment in which the various discipline and service codes run is

illustrated in figure 4. Each of the discipline codes (AERO, STRU, PERF, PROP) runs on

a separate workstation, and they communicate with each other by sending and receiving

information through a central data-manager code (DATA), which may run on a separate

workstation. Because the role of the data manager is only to move information and manage its

storage, a separate segment called the Interdisciplinary code (INTR) performs any computations

necessary to convert data from one discipline into a form suitable for another discipline. (An

example is the integration of aerodynamic pressures to provide structural forces.) Likewise, this

code sends and receives its data from the data manager. A master program (MAST) controls

the order in which the various discipline codes run. It also initializes the FIDO communication

network (COMM Network), which forms the backbone of the system.

The discipline, dam-manager, and master codes, along with the optimizer code (OFI'I),

comprise the primary computational segments of the FIDO network. To provide a means

of looking at the dam as the design process proceeds, an auxiliary segment called 'SPY'

is added. The SPY segment can be started while computations are underway, and multiple

instances of SPY are allowed. With proper permissions, these can run on any workstation

connected to the network, which allows remote consultants to view results as they are produced

and to give timely advice.

Not shown is an independent program (SETUP), which is invoked by the designer to pick

the flight conditions, the base aireraR geometry, the initial design constraint values, and the

initial values of the design variables from a range of previously stored possibilities.

Task Control

The master segment (MAST in figure 4) is responsible for the overall control flow of the

primary segments in the execution system. A major exception is when multiple tasks (and,

thus, segments) are started by the master in parallel; any synchronization needed between the

parallel tasks must be done via barrier calls.

The primary segments of the execution system operate in a host/slave mode. The master

code acts as the host and is initiated first. This code sets up the COMM Network, based on

configuration files. Specifically, it first runs a procedure to start a communication server on

each computer. The master code next starts all primary segments on the appropriate computers



via the communicationlibrary (COMMLIB). The master then executes tasks via COMMLIB

within each of the primary segment servers as necessary to complete the desired work for a

run. Finally, the segment servers and the COMM Network are shut down.

A graphical user interface (GUI) has been developed to display the state of the FIDO system

at all times from start-up to completion of a run. The GUI shows a simplified problem diagram

and indicates which parts are starting up, active, inactive, or shutting down by color code.

Data Management

The purpose of the FIDO data manager (DATA in figure 4) is to provide a centralized

access service for the storage and retrieval of data during a run of the FIDO system. For a

given design problem, the definition of the data to be handled during a run is prepared by

the problem designer during the setup phase, which results in several configuration files that

define the data in a standardized format and contain initial values for appropriate data. On

start-up, the data manager reads and internally stores the information in these files and then

enters into a.service mode; in this mode, data values are stored and retrieved upon request

via COMMLIB calls during a run, and data files are moved among FIDO work and archival

directories at the appropriate times. A detailed report and a summary report file are generated

to document the data-management activities during a run.

One of the files generated in the setup phase, which contains information about the atomic

data elements, provides the basic description of the managed data. In this file, numeric codes are

assigned to individual integer, floating point, and character string data elements or to arrays of

these. An include file contains corresponding mnemonic macros for each of the numeric codes.

These mnemonic macros are used in the discipline driver codes to reference the corresponding

data values. Additional information provided for each atomic data element includes the name,

type, units, a short description, usage roles, and array length, where appropriate.

Another file identifies the groups of atomic data elements that comprise the actual data

packages sent and received by the data manager. This grouping of character strings and integer

and floating point numbers results in more etticient use of the message-passing system.

Discipline Segments

The discipline segments are represented by the blocks labeled AERO, PERF, OPTI, INTR,

PROP, and STRU around the lower part of figure 4. Each functionally consists of two parts. One

part is the set of codes that perform the discipline computations; the other is a driver that handles

the discipline communications via COMMLIB and calls on the discipline codes as needed.

The discipline codes generally are established Fortran codes with well-known characteristics

and proven reliability. These are the codes that do the actual analysis, which may be

computationally intensive. A minimum of changes are made within these codes to prepare

them for use with the FIDO system. These changes are those necessary to put these codes

into what can be considered subroutine library form. That is, these codes are changed



to make themcallableas subroutineswith computationand input/outputcontrol managed
throughsubroutinearguments.

This control of output from the discipline codesis necessaryto the orderly function
of the FIDO system. Without control, intermixedoutput from severaldisciplinesgenerally
scrolls upand off the main workstationwindow; neededinformationis lost, overwhelmedby
the rarely useddetail that most Fortran codes print out. By applying appropriate control, a

summary log of the multiple analyses can be kept and the data that are needed are correctly

passed from one discipline to another. Data to be kept (including 'complete output files) are

managed by the FIDO system, and the SPY segment is able to retrieve data interactively for

display as requested during a run.

The discipline drivers generally are written in C; the .discipline codes are called as

subroutines. Each driver contains several blocks of code that are invoked by the master as

needed to handle the start, analysis, gradient, and exit phases of the problem. Each block

contains sub-blocks of code for computation, normal completion and error-handling tasks.

The discipline drivers in the FIDO model problem can serve as templates or examples for

more complex problems.

The design variable values, file names, and other data are passed through the discipline

drivers as arguments to the discipline codes. According to the problem requirements, more

than one discipline code may need to be called by a driver. An example is the aerodynamics

discipline, which calls separate codes to obtain the induced, wave, and friction drag components

in computing total drag for the model problem. The interfaces between the discipline codes

and their drivers must be accurately specified in order to provide proper communications.

In addition, the user needs to specify what the output files from the code are and how they

are to be used by SPY.

For the FIDO model problem, the principal disciplines are aerodynamics, structures,

propulsion, and performance. Functionally, the optimizer and interdisciplinary codes are also

treated as discipline codes within the system. Bemuse the emphasis in FIDO is on developing

the system, the discipline codes were chosen for speed rather than accuracy. They include

linear aerodynamics codes and an equivalent plate structures code; these are considered "low

fidelity" codes but run in a few minutes on a workstation. In the future they will be replaced

with medium- or high-fidelity codes (Euler or Navier-Stokes aerodynamics, finite-element

structures), which will take minutes or hours to run on parallel or vector supercomputers.

FIDO Communication Library

The FIDO communication library (COMMLIB in the middle of figure 4) is designed to

be used as the communication backbone of a system of codes executed in a heterogenous,

distributed network of computers. The various computational tasks (and codes to do these

tasks) must be sorted into groups (called segments) for COMMLIB. Each of these tasks is

targeted for a different computer. The segments are further sorted into those that are primary

and those that are auxiliary. The primary segments are those that perform functions essential



to a run; eachrequiresa driver or serverto be startedat the beginningof the run. The
auxiliary segmentsare thosethatdo not performessentialfunctionsand socanconnectwith
the COMM Network at any time via a userrequest.Even for the primary segments,not all
the executablecodemust be loadedwith the server; it can beexecutedlater via a forked or
remoteprocessif that is moreefficient.

Thecollectiveexecutionof the primary segmentson a set of computerslinked togetherby
a physicalnetwork forms a distributedexecutionsystem.The partof that systemthat consists
of the communicationlibrary, the selectedcomputers,and thephysicalnetwork is referredto
asthe COMM Network. The segmentsusethe COMM Network for variouscommunication
choresby making calls to COMMLIB.

Although any two segmentscan directly transfermessagesvia COMMLIB, a more
conservativeapproachis to usea singledatamanager.The library includesa specialset of
message-passingfunctionsthat communicatewith a datamanagersegment,which should run
in parallel in a servicemodewhile the othersegmentsexecutetasks. Thus,the systemcan
be programmedso that nearlyall global data (or datausedby multiple segments)aresent to
and retrievedfrom the datamanager.Both direct messagesand data-managermessagescan
be usedas thesystemdesignerdeterminesbest. Additional specialcalls areavailableto send
profile information to the profile analyzersegment(currently the datamanager)andto send
flags to a monitor (currently the SPY segment).

The communicationlibrary is merelya tailored interfaceto a low-level message-passing
library (currentlythe PVM systemfrom Oak RidgeNationalLabs1).It is tailored to provide
the necessary functionality in a simple interface format that supports a distributed execution

system like that described above. Each call in COM]MLIB can actually send several messages

to conduct a complex handshaking communication protocol between two segments, which

allows the user-level calls to be simple. In addition, this approach provides improved portability

and generality to the execution system because only COMMLIB itself needs to be modified

if the low-level message-passing software is changed.

SPY Segments

The FIDO SPY segment (SPY Graphics in figure 4) is designed to provide secondary

services to system codes that use COMMLIB. These services allow users of the FIDO system

to retrieve results while the computations are in progress and display them as text or graphics.

In addition, the principal user can alter the values of selected variables in order to provide

some guidance to the design process.

Four types of data are available: problem definition, cycle status, cycle history, and profile

data. The problem definition data consist of the fixed problem parameters, initial values of

some variables, and miscellaneous descriptive information. The cycle status data contain the

current cycle number, phase and task; a list of data that is available in DATA and SPY; and

miscellaneous timing information. The cycle history data consist of selected scalar values and

t PVM i_ormaUo_ is available by sending the e-mail message "send index from pyre3" to netlib@orrd.gov



selected data arrays (on the computational grids) for each completed cycle. Finally, the profile

data consist of the execution time histories of the various computational tasks. These data can

be displayed on the screen as text or in graphical format. Current graphical formats include

line plots (e.g., cycle history of the objective function) and contour plots of distributed data

(e.g., surface pressures (as in figure 5), stresses, or deflections).

Multiple instances of the SPY code can connect to and communicate with the COMM

Network that is used by a set of primary segments. Thus, the master/slave paradigm is

augmented to include multiple (but limited) masters. The SPY connections can be initiated at

any time while the FIDO system is running a problem. In the current implementation, new

SPY's become active only at the begimiing of a new design cycle; future implementations

will allow activity to begin within a cycle.

Actually, two types of SPY segment exist. One is designated as the 'Master SPY' and

has special properties. It can be invoked only by the user who is running the FIDO problem

(the "designer"); only this user is allowed to change the current values of design variables,

constraints, and initially-set parameters. This capability provides some measure of manual

control over the design process. Because the designer may need advice during the design

process (perhaps from a remotely located expert in one of the disciplines involved), the other

type of SPY segment is provided.

This SPY type is designated as an 'Agent SPY'; it is limited to displaying data, but can exist

in multiple instances. It can be invoked with proper permission from any location connected

to the network (e.g., anywhere on the Internet). Thus, the remote expert's workstation can

display any of the information available to the designer (shown schematically in figure 6).

In fact, several users can examine the same or different FIDO output at different locations
at the same time.



CONCLUDING REMARKS

The Framework for Interdisciplinary Design Optimization (FIDO) is being developed as

a general programming environment for automating the distribution of complex computing

tasks over a networked system of heterogeneous computers. The FIDO system facilitates

communications between computational tasks distributed over a computer network and provides

for automatic interactions in multidisciplinary problems, for example, how to reach a nearly

optimal consensus in the aircraft design process.

In the FIDO system, the computers involved are networked together, have access to

centralized data, and work on their pa_s of the design simultaneously in parallel whenever

possible, under the direction of a master code. Each computational task can be assigned the

computer type most appropriate for it. An auxiliary code, SPY, is provided for viewing results

as they are produced and for steering the design process. In the viewing mode, it can be run

as multiple instances and from remote locations. The FIDO software is written in a modular

form in order to ease migration to upgraded or completely new problems: different codes can

"be substituted for each of the current code modules with little or no effect on the others.

The FIDO system has been designed to be adaptable to any distributed computing problem.

It has been demonstrated for a simplified High-Speed Civil Transport (HSCT) aircraft design

problem; currently, a much more complex HSCT problem is being implemented. The FIDO

system's potential for commercial use rests in the capability it provides for automatically

coordinating diverse computations on a networked system of workstations and computers. For

example, FIDO could provide the coordination required for the design of fixed- or rotary-wing

aircraft, automobiles, ships, spacecraft, computer systems, or electronics. It could also be used

for modeling large-scale interacting systems, such as in economic or ecological models.
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APPENDIX. FIDO PROJECT SUMMARY

FIDO System Features:

Provides synchronous controlin a heterogeneous computing environment

Is adaptable to a wide variety of problems that use multiple computer programs

Has modular form to ease migration to new problems

Incorporatesa variety of debugging features

Includes SPY capabilityfor monitoring computational progress,displaying

variablesgraphically,and modifying variablesfor design steering

FIDO Project Accomplishments:

Optimization of simple HSCT design problem

Use on network of UNIX _ workstations (Sun, SGI, DEC)

Demonstration of monitoring, graphics display, and variable modification

through SPY

Development and demonstration of flexible file-based data management

Future FIDO Plans:

Demonstrate FIIX) on a complex HSCT design problem

(NASA Langley HiSAIR "Pathtindef')

Replace low-fidelity-analysis with high-fidelity-analysis computer programs

Improve graphical user interfaces for problem setup and for control

Fully document the software and publish findings

Get and apply feedback from Beta Tests

FIDO Point of Contact:

Dr. Robert P. Weston

Computational Sciences Branch

Mail Stop 159

NASA Langley Research Center

Hampton VA 23681-0001

(804) 864-2149

FAX: (804) 864--6134

r.p.weston@larc.nasa.gov



FIDO Team:

FIDO Concept Originator and Project Designer:

Dr. Thomas M. Eidson, High Technology Corporation

FIDO Project Leader:

Dr. Robert P. Weston, Computational Sciences Branch

Current FIDO Working Group:

m Ramki K_rishnan, Analytical Services & Materials, Inc.

Jim Townsend, Computational Sciences Branch

Ben James, Lockheed Engineering & Sciences Co.

Kelvin Edwards, Analytical Services & Materials, Inc.

Mary Adams, Computational Sciences Branch

Ray Gates, Computer Sciences Corp.

Don Randall, Computer Systems Branch

Other FIDO Contributors:

Peter Coen, Vehicle Integration Branch

Tom Zang, Computational Sciences Branch

Larry Green, Computational Sciences Branch

Gary Giles, Aeroelastic Analysis & Optimization Branch

Gas Dovi, Lockheed Engineering & Sciences Co.

Greg Wrenn, Lockheed Engineering & Sciences Co.

Kim Cunningharm Computer Sciences Corp.

Bill LaMarsh, Unisys Corp.

Nina Hathaway, Unisys Corp.

Tom Crockett, ICASE

Bill yon Ofenheim, Flight Software & Graphics Branch
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